Abstract

The leukocyte immunoglobulin-like receptor (LILR) A3 is a member of the highly homologous activating and inhibitory receptors expressed on leukocytes. LILRA3 is a soluble receptor of unknown functions but is predicted to act as a broad antagonist to other membrane-bound LILRs. Functions of LILRA3 are unclear primarily because of the lack of high quality functional recombinant protein and insufficient knowledge regarding its ligand(s). Here, we expressed and characterized recombinant LILRA3 (rLILRA3) proteins produced in 293T cells, Escherichia coli, and Pichia pastoris. We found that the purified rLILRA3 produced in the mammalian system was the same size as a 70-kDa native macrophage LILRA3. This is 20 kDa larger than the calculated size, suggesting significant post-translational modifications. In contrast, rLILRA3 produced in E. coli was similar in size to the unprocessed protein, but yeast-produced protein was 2-4 times larger than the unprocessed protein. Treatment with peptide-N-glycosidase F reduced the size of the mammalian cell- and yeast-produced rLILRA3 to 50 kDa, suggesting that most modifications are due to glycosylation. Consistent with this, mass spectrometric analysis of the mammalian rLILRA3 revealed canonical N-glycosylation at the predicted Asn(140), Asn(281), Asn(302), Asn(341), and Asn(431) sites. Functionally, only mammalian cell-expressed rLILRA3 bound onto the surface of monocytes with high affinity, and importantly, only this significantly abrogated LPS-induced TNFα production by monocytes. Binding to monocytes was partially blocked by β-lactose, indicating that optimally glycosylated LILRA3 might be critical for ligand binding and function. Overall, our data demonstrated for the first time that LILRA3 is a potential new anti-inflammatory protein, and optimal glycosylation is required for its functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.