Abstract

A stem glycosylation site of hemagglutinin (HA) is important to the stability of the HA trimmer. A previous study shows that the stem 10/11 overlap glycosylation site of the H5 subtype avian influenza virus may influence the cleavage of HA, whereas the exact site and its effect on virulence remain unclear. In this study, site-directed mutagenesis was used to generate single or double mutant rSY-Δ10(10NNAT), rSY-Δ11(10NNSA), and rSY-Δ10/11(10NNAA) of the overlapping glycosylation site (10NNST) on the HA of A/Mallard/Huadong/S/2005(SY). By using Western blot analysis, we show that both rSY-Δ11 and rSY-Δ10/11 mutant viruses had significant delay on HA cleavage and a reduced HA molecular mass compared to the wild-type virus rSY, while the rSY-Δ10 mutant virus exhibited a similar HA molecular mass to that of the wild-type virus rSY. Interestingly, both rSY-Δ11 and rSY-Δ10/11 mutant viruses reverted their glycosylation sites at 11N after passage, indicating that 11N is a true and critical glycosylation site. Compared to the wild-type virus rSY, rSY-Δ11 and rSY-Δ10/11 mutant viruses had decreased growth rates, reduced thermo- and pH-stability, decreased pathogenicity, and limited systemic spread. Therefore, our study suggests that the 11N glycosylation site plays a key role in HA cleavage, structural stability and pathogenicity in H5 subtype avian influenza virus.

Highlights

  • H5 subtype avian influenza virus (AIV) infects poultry and mammals worldwide [1,2,3], posing a threat to the poultry industry and to public health [4, 5]

  • Rescue of the mutant viruses The overlapping glycosylation site at 10/11 in HA was modified by changing the rSY amino acid sequence NNST to NNAT, NNSA or NNAA, and the respective mutants were named rSY-Δ10, rSY-Δ11 and rSY-Δ10/11

  • After passage in SPF chicken embryonic egg or chicken embryo fibroblast (CEF) for three generations, rSY-Δ11 reverted from NNSA to NNST and rSY-Δ10/11 from NNAA to NNAT, while no reversion was found for NNAT in rSYΔ10

Read more

Summary

Introduction

H5 subtype avian influenza virus (AIV) infects poultry and mammals worldwide [1,2,3], posing a threat to the poultry industry and to public health [4, 5]. Hemagglutinin (HA), a surface glycoprotein, plays an important role in the influenza life cycle [4, 6]. As the avian influenza virus evolves, glycosylation distribution of HA is becoming increasingly complicated [7, 8]. Stem glycosylation of HA appears conserved, mainly attributed to the stability of the HA trimer [14, 16]. A previous study shows that there is a potential 10/11 glycosylation site overlap on the HA stem of the SY virus, which plays an important role in cleavage [17]. Site-direct mutagenesis was used to delete the overlapping glycosylation site, so biological characteristics of the mutants could be determined

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call