Abstract

The role carbohydrate residues may play in the sorting of newly synthesized fast-transported proteins during the initiation of fast axonal transport has been examined by identifying individual fast-transported glycoproteins that contain either or both fucose and galactose. [3H]Fucose or [3H]galactose was incorporated together with [35S]methionine in vitro in bullfrog dorsal root ganglia. Fast-transported proteins that accumulated proximal to a ligature on the spinal nerve were separated via two-dimensional gel electrophoresis, and 92 gel spots were analyzed quantitatively for the presence of 35S and 3H. Of these spots, 56 (61%) contained either or both fucose and galactose. Glycomoieties were generally associated with families of charged spots whose isoelectric points could be altered with neuraminidase treatment. Single spots tended to be unglycosylated and were unaffected by neuraminidase. The prevalence of glycoproteins was considerably greater in the higher-molecular weight range. Of the 55 spots analyzed with molecular weight greater than approximately 35,000 daltons, 89% were glycosylated, whereas only 19% of the 37 spots with lower molecular weight contained sugar moieties. When considered in light of previous studies in which similar subpopulations have been described, the current findings suggest that the presence or absence of glycomoieties may represent another criterion by which proteins are sorted during the initiation of fast axonal transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.