Abstract
Immune checkpoint proteins have become recent research hotspots for their vital role in maintaining peripheral immune tolerance and suppressing immune response function in a wide range of tumors. Therefore, investigating the immunomodulatory functions of immune checkpoints and their therapeutic potential for clinical use is of paramount importance. The immune checkpoint blockade (ICB) is an important component of cancer immunotherapy, as it targets inhibitory immune signaling transduction with antagonistic antibodies to restore the host immune response. Anti-programmed cell death-1 (PD-1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) monoclonal antibodies are two main types of widely used ICBs that drastically improve the survival and prognosis of many patients with cancer. Nevertheless, the response rate of most cancer types remains relatively low due to the drug resistance of ICBs, which calls for an in-depth exploration to improve their efficacy. Accumulating evidence suggests that immune checkpoint proteins are glycosylated in forms of N-glycosylation, core fucosylation, or sialylation, which affect multiple biological functions of proteins such as protein biosynthesis, stability, and interaction. In this review, we give a brief introduction to several immune checkpoints and summarize primary molecular mechanisms that modulate protein stability and immunosuppressive function. In addition, newly developed methods targeting glycosylation on immune checkpoints for detection used to stratify patients, as well as small-molecule agents disrupting receptor-ligand interactions to circumvent drug resistance of traditional ICBs, in order to increase the clinical efficacy of immunotherapy strategies of patients with cancer, are also included to provide new insights into scientific research and clinical treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.