Abstract

Mycosporine-like amino acids (MAAs) are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune (N. commune). An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments.

Highlights

  • The terrestrial cyanobacterium Nostoc commune (N. commune) is a cosmopolitan species that is distributed from the tropics to the polar regions of the Earth [1]

  • We have identified the 612-Da Mycosporine-like amino acids (MAAs) consisting of a cyclohexenimine chromophore conjugated with the substituent group of threonine (Figure 6), and this scaffold was characterized as a palythine-threonine with a molecular mass of 288 Da

  • Novel glycosylated MAAs with radical scavenging activities were identified in the terrestrial cyanobacterium Nostoc commune

Read more

Summary

Introduction

The terrestrial cyanobacterium Nostoc commune (N. commune) is a cosmopolitan species that is distributed from the tropics to the polar regions of the Earth [1]. N. commune adapts to terrestrial environmental conditions [1,2]. It forms visually conspicuous colonies that are subjected to frequent cycles of desiccation and wetting. Desiccated colonies have no metabolic activity and retain the ability to grow for more than 100 years [3,4]. N. commune cells rapidly recover respiration and photosynthesis [5,6,7,8] This phenomenon is termed anhydrobiosis [9,10,11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call