Abstract

We have studied the glycosphingolipid composition in an F-11 neuroblastoma cell line originated from hybridization of a mouse neuroblastoma cell line (N18TG-2) with rat dorsal root ganglion cells. The total lipid-bound glucose of F-11 cells was estimated to be 0.28 micrograms/mg of protein and the total lipid-bound sialic acid was 0.82 micrograms/mg of protein. The major neutral glycosphingolipids were Gb4 (37% of the total neutral glycosphingolipids), Gb3 (15%), LacCer (21%), and GlcCer (15%). The major gangliosides were found to be GM3 (37% of the total gangliosides), GD3 (27%), O-acetylated GD3 (18%), and GD1a (4%), with trace amounts of GD2. The unusually high concentration of O-acetylated GD3 is consistent with its putative role as a tumor marker. Immunocytochemical localization studies of GD3 and O-acetylated GD3, examined by mouse monoclonal antibodies R24 and D1.1, respectively, revealed that the cell bodies and processes were all positively stained. To elucidate the role of O-acetylated GD3 in tumorigenesis, we transfected F-11 cells with the O-acetylesterase gene from influenza C virus. Compared with the original cell line, the transfected cells showed a dramatic increase in the level of GD3 (150% of that in the control cells) and a significant decrease of the concentration of O-acetylated GD3 (27% of control cells). In addition, the transfected F-11 cells exhibited a morphology different from the parental cells with enlarged cell bodies and elongated neurites. We conclude that alteration of ganglioside composition, particularly the expression of GD3 and O-acetylated GD3, may be associated with the morphological changes observed in this cell line.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call