Abstract

Glycosphingolipids (GSLs) are abundant, ceramide-containing lipids in the nervous system that play key functional roles in pain and inflammation. We measured gene expression (Ugcg, St3gal5, St8sia1, B4galNT1, Ugt8a, and Gal3st1) of glycosyltransferases involved in GSL synthesis in murine dorsal root ganglion (DRG) and spinal cord after complete Freund’s adjuvant (CFA)-induced unilateral hind-paw inflammation (1 day vs. 15 days). Chronic inflammation (15 days) sensitized both ipsilateral and contralateral paws to pain. One day of induced unilateral hind-paw inflammation (1d-IUHI) increased Ugcg, St8sia1, B4galnt1, and Gal3st1 expression in ipsilateral cord, suggesting that sulfatide and b-series gangliosides were also elevated. In addition, 1d-IUHI increased Ugcg, st3gal5 and Gal3st1 expression in contralateral cord, suggesting that sulfatide and a-/b-series gangliosides were elevated. By contrast, 1d-IUHI decreased Ugcg, St3gal5, and St8sia1 expression bilaterally in the DRG, suggesting that b-series gangliosides were depressed. Since intrathecal injection of b-series ganglioside induced mechanical allodynia in naïve mice, it seems reasonable that b-series gangliosides synthesized from upregulated St8sia1 in the ipsilateral spinal cord are involved in mechanical allodynia. By contrast, chronic inflammation led to a decrease of Ugcg, St3gal5, B4galnt1, and Gal3st1 expression in spinal cord bilaterally and an increase of St8sia1 expression in the ipsilateral DRG, suggesting that a-/b-series gangliosides in the spinal cord decreased and b-series gangliosides in ipsilateral DRG increased. These changes in glycosyltransferase gene expression in the DRG and the spinal cord may contribute to the modification of pain sensitivity in both inflamed and non-inflamed tissues and the transition from early to chronic inflammatory pain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.