Abstract

Glycoside phosphorylases are enzymes that are frequently used for polysaccharide synthesis. Some of these enzymes have broad substrate specificity, enabling the synthesis of reducing-end-functionalized glucan chains. Here, we explore the potential of glycoside phosphorylases in synthesizing chromophore-conjugated polysaccharides using commercially available chromophoric model compounds as glycosyl acceptors. Specifically, we report cellulose and β-1,3-glucan synthesis using 2-nitrophenyl β-d-glucopyranoside, 4-nitrophenyl β-d-glucopyranoside, and 2-methoxy-4-(2-nitrovinyl)phenyl β-d-glucopyranoside with Clostridium thermocellum cellodextrin phosphorylase and Thermosipho africanus β-1,3-glucan phosphorylase as catalysts. We demonstrate activity for both enzymes with all assayed chromophoric acceptors and report the crystallization-driven precipitation and detailed structural characterization of the synthesized polysaccharides, i.e., their molar mass distributions and various structural parameters, such as morphology, fibril diameter, lamellar thickness, and crystal form. Our results provide insights for the studies of chromophore-conjugated low molecular weight polysaccharides, glycoside phosphorylases, and the hierarchical assembly of crystalline cellulose and β-1,3-glucan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.