Abstract

In order to accelerate the hydrolysis of glycosidic bonds by factors approaching 10(17)-fold, glycosidases have evolved finely tuned active sites optimally configured for transition-state stabilization. Structural analyses of various enzyme complexes representing stable intermediates along the reaction coordinate, in conjunction with detailed mechanistic studies on wild-type and mutant enzymes, have delineated the contributions of nucleophilic and general acid/base catalysis, as well as the roles of noncovalent interactions, to these impressive rate enhancements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call