Abstract

We have utilized the method of whole embryo culture for metabolic labeling of mouse embryos with [ 3H]glucosamine during closure of neural folds at the posterior neuropore (27- to 29-somite stage). Accumulations of newly synthesized glycopeptides, lactosaminoglycans, hyaluronate, and sulfated glycosaminoglycans (GAG) were assessed by ion-exchange chromatography of glycoconjugates isolated from labeled embryos. Accumulation of hyaluronate and sulfated GAG was greatest in the posterior neuropore and decreased progressively toward the hindbrain where neurulation was already complete. Hyaluronate comprised a progressively smaller proportion of total newly synthesized glycoconjugate from the posterior neuropore toward the cranial region and glycopeptides showed the opposite trend. Sulfated GAG and lactosaminoglycans showed no consistent differences in relative abundance along the neuraxis. Autoradiographic analysis of newly synthesized glycoconjugates revealed especially heavy incorporation into developing basement membranes, beneath the neuroepithelium and around the notochord, in the posterior neuropore and recently closed neural tube regions, but not at more cranial levels of the neuraxis. Predigestion of sections with a specific hyaluronidase showed a significant quantity of this glycoconjugate to be hyaluronate. These results are consistent with a role for neuroepithelial and notochordal basement membrane hyaluronate in spinal neurulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call