Abstract
The present study shows that sciatic nerve crush in 2-day-old rats causes extensor digitorum longus (EDL) muscle atrophy and motor neuron loss and that treatment with glycosaminoglycans (GAGs) promotes muscle reinnervation, motor neuron survival, and markedly increases insulin-like growth factor-I (IGF-I) content in the denervated muscles. EDL muscle denervation-induced atrophy in saline-treated rats is progressive and reaches the greatest extent at 42 days after birth, which correlates with reduced EDL weight growth. There is also a partial reinnervation as shown by the number of reinnervated EDL muscle fibers (65.4% of control) and by the poor restoration of the indirect isometric twitch tension (62% of control) that is further reduced under tetanic stimulation (34% of control). The number of surviving motor neurons that innervate EDL muscle drops from 55 +/- 3 to 29 +/- 8. In GAGs-treated 42-day-old rats, the effects of neonatal nerve lesioning on EDL muscle atrophy and denervation are successfully reversed, and the isometric twitch tension and the capacity to hold tetanic stimulation are restored to almost control levels. The number of surviving EDL motor neurons is also increased to 43 +/- 4. Treatment with GAGs selectively affects IGF-I content in denervated hindlimb muscles, which is augmented from 7.02 +/- 0.71 ng/mg tissue to 25.72 +/- 0.7 in the EDL and from 3.2 +/- 0.18 to a robust 211 +/- 9.6 in the soleus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.