Abstract

The success of a biocompatible vascular graft depends upon its mechanical attributes and post-implantation healing responses. Mechanical strength is a paramount issue because grafts placed in the arterial circulation must be capable of withstanding long-term haemodynamic stress without graft failure. Extracellular matrix (ECM) proteins that are deposited by the cells to remodel the environment play a major role in determining the construct stability and strength. A suitable scaffold that stimulates ECM deposition and remodelling by cells grown in vitro may generate tissues with normal function. The objective of this study was to prove that fibrin matrix composition can be modified with growth factors (GFs) and glycosaminoglycans (GAGs) to promote ECM remodelling coupled with endothelial cell (EC) growth. Effect of GFs and GAGs on ECM production and remodelling was studied separately and in combination. Matrices recovered after EC cultures were analysed after immunochemical staining and it was observed that GFs and GAGs influence collagen IV and elastin deposition. Quantitative PCR analysis of mRNA after specific periods of culture demonstrated significant upregulation of elastin and collagen expression in EC by combination of GFs and GAGS when compared to their individual effects. The results of experiments conducted with various combinations of GFs and GAGs show that a biomimetic approach of immobilization of signalling molecules in fibrin can upregulate ECM remodelling with simultaneous degradation of the fibrin matrix and deposition of collagen IV and elastin. Hence, this combination may be suitable for cardiovascular tissue generation in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.