Abstract

We recently demonstrated that granulocyte-macrophage colony-stimulating factor (GM-CSF) is an autocrine growth factor for human osteoblastic (hOB) cells. Since GM-CSF is a member of the heparin-binding factor family, we examined the interactions between GM-CSF and glycosaminoglycans (GAGs) present in the osteoblast microenvironment. Using a bioassay in which the mitogenic activity of recombinant human (rh) GM-CSF was measured after incubation in the presence of an hOB cell layer or extracellular matrix (ECM) produced by these cells, we showed that rhGM-CSF binds to GAG components present in the ECM and that the bound rhGM-CSF retains its ability to stimulate hOB cell proliferation. Heparan sulfate compounds on the hOB cell surface were also found to sequester GM-CSF. Moreover, treatment with sodium chlorate, an inhibitor of GAG sulfation, suppressed the mitogenic activity of rhGM-CSF on hOB cells. This inhibitory effect was rescued by a low dose of heparin. Heparin was also found to promote the effect of rhGM-CSF on hOB cell proliferation, allowing nonmitogenic high doses of rhGM-CSF to stimulate hOB cell growth. Western blot analysis showed that undersulfation of cellular GAGs by chlorate inhibited the increased tyrosine phosphorylation of proteins involved in GM-CSF signaling in cloned immortalized hOB cells. The data demonstrate that GM-CSF binds to proteoglycans on the hOB cell surface and in ECM produced by these cells and that the bound GM-CSF is biologically active. Furthermore, this study shows that cellular proteoglycans play an essential role in GM-CSF signaling and biological activity in hOBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call