Abstract
Glycosaminoglycans (long-chain polysaccharides) are major components of the extracellular matrix, glycocalyx, and synovial fluid. These materials provide strength and elasticity to tissues and play a key role in regulating cell behavior. Modifications to these materials have been linked to multiple human pathologies. Although modification may occur via both enzymatic and nonenzymatic mechanisms, there is considerable evidence for oxidant-mediated matrix damage. Peroxynitrite (ONOO −/ONOOH) is a potential mediator of such damage, as elevated levels of this oxidant are likely to be present at sites of inflammation. In this study we demonstrate that hyaluronan and chondroitin sulfate are extensively depolymerized by HO ⋅ and CO 3 ⋅−, but not NO 2 ⋅, which may be formed from peroxynitrite. Polymer fragmentation is shown to be dependent on the radical flux, to be O 2-independent, and to occur in a site-selective manner as indicated by the detection of disaccharide fragments. EPR spin trapping experiments with polymers, oligomers, and component monosaccharides, including 13C-labeled materials, have provided evidence for the formation of specific carbon-centered sugar-derived radicals. The time course of formation of these radicals is consistent with these species being involved in polymer fragmentation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.