Abstract

Glycosaminoglycans (GAGs) play an important role in many biological processes in the extracellular matrix. In a theoretical approach, structures of monosaccharide building blocks of natural GAGs and their sulfated derivatives were optimized by a B3LYP6311ppdd//B3LYP/6-31+G(d) method. The dependence of the observed conformational properties on the applied methodology is described. NMR chemical shifts and proton-proton spin-spin coupling constants were calculated using the GIAO approach and analyzed in terms of the method's accuracy and sensitivity towards the influence of sulfation, O1-methylation, conformations of sugar ring, and ω dihedral angle. The net sulfation of the monosaccharides was found to be correlated with the 1H chemical shifts in the methyl group of the N-acetylated saccharides both theoretically and experimentally. The ω dihedral angle conformation populations of free monosaccharides and monosaccharide blocks within polymeric GAG molecules were calculated by a molecular dynamics approach using the GLYCAM06 force field and compared with the available NMR and quantum mechanical data. Qualitative trends for the impact of sulfation and ring conformation on the chemical shifts and proton-proton spin-spin coupling constants were obtained and discussed in terms of the potential and limitations of the computational methodology used to be complementary to NMR experiments and to assist in experimental data assignment.

Highlights

  • Glycosaminoglycans (GAGs) represent a class of linear anionic heteropolysaccharides containing repeating disaccharide units made up of a hexose or a hexuronic acid linked to a hexosamine by a 1-3 or 1-4 glycosidic linkage

  • According to our computational data, despite the limitations for the chemical shifts calculations described above, we can clearly see a general increase of the H9/H10/H11 chemical shift value averaged for all gg/tg/gt conformations with an increase in the sulfation of the monosaccharides (Supplementary Table 18), whereas, for protons H10 and H11, there is only one significant increase of the chemical shift when a monosaccharide is sulfated once; the increase of the chemical shift value for proton H9 is significant in the order Glc/GalNAc, Glc/GalNAc(4S), Glc/GalNAc(6S), and Glc/GalNAc(46S) (Supplementary Table 19). These results show that, despite the expected moderate accuracy in the prediction of chemical shifts, the trend for such an important parameter as net sulfation of the monosaccharide being analyzed by the calculations of the methyl-group chemical shifts in the acetyl group of Glc/GalNAc derivatives agrees with the trend observed by nuclear magnetic resonance (NMR) experimental data for the polymeric GAGs with different net sulfation degree

  • We investigated perspectives and limitations of the applicability of GIAO methodology for the assistance to NMR analysis of GAGs

Read more

Summary

Introduction

Glycosaminoglycans (GAGs) represent a class of linear anionic heteropolysaccharides containing repeating disaccharide units made up of a hexose or a hexuronic acid linked to a hexosamine by a 1-3 or 1-4 glycosidic linkage. Hydroxyl groups of these saccharides can be sulfated at different positions. The rapid exchange of the intramolecular and solvent-mediated hydrogen bonds does not allow experimental techniques such as nuclear magnetic resonance (NMR) to gain a deep view on the hydrogen bonds formation in GAGs and, computational methods as molecular dynamics (MD) simulations are very useful to analyze GAGs structural properties

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call