Abstract

Biochemical alterations such as glycosaminoglycan (GAG) depletion occur early in the course of osteoarthritis, but cannot be detected with standard magnetic resonance techniques. With glycosaminoglycan chemical exchange saturation transfer (gagCEST), a biochemical imaging technique, it is feasible to detect biochemical components in knee joint cartilage. To establish baseline values for gagCEST magnetic resonance imaging (MRI) in knee joint cartilage at 3 Tesla (T). Twenty volunteers (8 women, 12 men; mean age, 24.55 ± 2.35 years;age range, 21-29 years) with no history or clinical findings indicative of knee joint pathologies underwent MRI at 3T. The imaging protocol included three-dimensional (3D) double-echo steady-state sequence for morphological cartilage assessment and a prototype 3D CEST pulse sequence to evaluate the CEST effects in six cartilage regions of the knee joint: (i) lateral femoral condyle; (ii) medial femoral condyle; (iii) lateral tibial plateau; (iv) medial tibial plateau; (v) patella; and (vi) trochlea. We used the asymmetry of the magnetization transfer ratio (MTRasym) parameter to quantify the gagCEST effects in these regions. Regional differences revealed high MTRasym values in the patellar (1.62% ± 1.19%) and the trochlear (1.17% ± 1.29%) cartilages, and low MTRasym values in the medial femoral condyle (0.41% ± 0.58%) and the lateral tibial plateau (0.52% ± 0.53%) cartilages. Regional differences in the gagCEST values must be considered when conducting gagCEST imaging of knee joint cartilage. In the future gagCEST imaging may be an additional feature in the evaluation of the biochemical composition of knee joint cartilage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.