Abstract

The synthesis of glycoproteins and inhibition of protein glycosylation by tunicamycin were examined during development of preimplantation mouse embryos and trophoblast adhesion. Tunicamycin specifically inhibits glycosylation of asparaginyl residues of glycoproteins. Tunicamycin, 0.25-5.0 microgram/ml, had no effect on early cleavage or aggregation between embryos, but the embryos remained irreversibly uncompacted when control embryos developed to the blastocyst stage. Trophoblast adhesion and giant cell outgrowth were reversibly inhibited and the binding of Con A was also reduced. Incorporation of 3H-mannose into blastocysts was inhibited by 80%, but that of 3H-glucosamine and 3H-leucine by only 28 and 18%, respectively, in the presence of 1.0 microgram/ml tunicamycin. Qualitative analysis showed that the incorporation of the sugars was markedly reduced in the majority of the fractions, but the synthesis of these carbohydrate-deficient glycopeptides was essentially normal. However, protein-polysaccharide fractions with nearly 40% of the incorporated glucosamine and only 5% mannose and 1% leucine were insensitive to inhibition by tunicamycin. Membrane-bound N-glycosidically linked glycoproteins therefore evidently play an important role during compaction and in trophoblast adhesion of mouse embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call