Abstract
To study vesicular stomatitis virus (VSV) entry and uncoating, we generated a recombinant VSV encoding a matrix (M) protein containing a C-terminal tetracysteine Lumio tag (rVSV-ML) that could be fluorescently labeled using biarsenical compounds. Quantitative confocal microscopy showed that there is a transient loss of fluorescence at early times after the initiation of endocytosis of rVSV-ML-Green (rVSV-MLG) virions, which did not occur when cells were treated with bafilomycin A1. The reduction in fluorescence occurred 5 to 10 min postentry, followed by a steady increase in fluorescence intensity from 15 to 60 min postentry. A similar loss of fluorescence was observed in vitro when virions were exposed to acidic pH. The reduction in fluorescence required G protein since "bald" DeltaG-MLG particles did not show a similar loss of fluorescence at low pH. Based on the pH-dependent fluorescence properties of Lumio Green, we hypothesize that the loss of fluorescence of rVSV-MLG virions during virus entry is due to a G ectodomain-dependent acidification of the virion interior. Biochemical analysis indicated that low pH also resulted in an enhancement of M protein dissociation from partially permeabilized, but otherwise intact, wild-type virions. From these data we propose that low-pH conformational changes in G protein promote acidification of the virus interior, which facilitates the release of M from ribonucleoprotein particles during uncoating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.