Abstract

The molecular basis by which human breast milk supports the development of a protective intestinal microbiome in infants is unknown. After lactose and lipids, human milk oligosaccharides (HMOs) are quantitatively the third largest and most diverse component of breast milk. In this work, glycomic profiling of HMO consumption by bifidobacteria using Fourier transform ion cyclotron resonance mass spectrometry reveals that one species, Bifidobacterium longum biovar infantis ATCC 15697, an isolate from the infant gut, preferentially consumes small mass oligosaccharides, representing 63.9% of the total HMOs available. These HMOs were detected in human breast milk at the onset and constantly through the first month of lactation by use of high performance liquid chromatography-chip time-of-flight mass spectrometry. Further characterization revealed that strain ATCC 15697 possesses both fucosidase and sialidase activities not present in the other tested strains. This work provides evidence that these small mass HMOs are selectively metabolized by select bifidobacterial strains and represent a potential new class of bioactive molecules functioning as prebiotics to facilitate a protective gut colonization in breast-fed newborns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.