Abstract

Establishing highly sophisticated polymer films for delivery systems in a biological environment and bioanalytical tasks, the formation, thickness, swelling behavior, and (physiological) stability of highly biocompatible polyelectrolyte multilayers (PEMs) are described. These PEMs are composed of the very weak polycation maltose‐modified hyperbranched poly(ethylene imine) (PEI‐Mal) and the strong polyanion heparin sodium salt (HE−Na+) deposited on Si wafer substrates . Two different glyco architectures for PEI‐Mal are used, characterized by two different degrees of maltose decoration on a PEI scaffold. Using two pH‐dependent deposition approaches for optimizing the (physiological) PEM stability and swelling, PEMs are characterized by (in situ) ellipsometry, atomic force microscopy (AFM), and (in situ) attenuated total reflection‐Fourier‐transform infrared (ATR‐FTIR). Thus, PEMs reveal significantly different thicknesses, growth mechanisms (linear versus exponential), and swelling behavior in dependence of both the polycation architectures and the deposition protocol. These PEMs will allow the study of their complexation and release properties as preswollen PEMs against anionic drug molecules, especially under physiological conditions in the future. image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.