Abstract

The leading proteomic method for identifying N-glycosylated peptides is liquid chromatography coupled with tandem fragmentation mass spectrometry (LCMS/MS) followed by spectral matching of MS/MS fragment masses to a database of possible glycan and peptide combinations. Such database-dependent approaches come with challenges such as needing high-quality informative MS/MS spectra, ignoring unexpected glycan or peptide sequences, and making incorrect assignments because some glycan combinations are equivalent in mass to amino acids. To address these challenges, we present GlycopeptideGraphMS, a graph theoretical bioinformatic approach complementary to the database-dependent method. Using the AXL receptor tyrosine kinase (AXL) as a model glycoprotein with multiple N-glycosylation sites, we show that those LCMS features that could be grouped into graph networks on the basis of glycan mass and retention time differences were actually N-glycopeptides with the same peptide backbone but different N-glycan compositions. Conversely, unglycosylated peptides did not exhibit this grouping behavior. Furthermore, MS/MS sequencing of the glycan and peptide composition of just one N-glycopeptide in the graph was sufficient to identify the rest of the N-glycopeptides in the graph. By validating the identifications with exoglycosidase cocktails and MS/MS fragmentation, we determined the experimental false discovery rate of identifications to be 2.21%. GlycopeptideGraphMS detected more than 500 unique N-glycopeptides from AXL, triple the number found by a database search with Byonic software, and detected incorrect assignments due to a nonspecific protease cleavage. This method overcomes some limitations of the database approach and is a step closer to comprehensive automated glycoproteomics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.