Abstract

Protein glycosylation has dramatically enriched both the functional and structural diversity of proteins in mammals. Due to the non-template biosynthesis of glycoproteins in the nature, glycoproteins always exist as heterogeneous mixtures with different glycan structures, which have complicated the isolation of pure and well-defined glycoforms for detailed mechanistic and functional studies. Over the past years, different strategies including chemical and chemoenzymatic methods have been developed for obtaining the homogenous glycoproteins, which will offer new opportunities to conduct an extensive assessment of relationship between the structure and function of glycoproteins and to reveal the biological role of the individual oligosaccharide on a glycoprotein for the evolution and development of cells. This chapter gives insight into the recent progress in the development of chemical and chemoenzymatic synthesis of homogenous glycoproteins including native chemical ligation, serine/threonine ligation, and chemoenzymatic glycoprotein remodeling. Examples are selected to demonstrate successful applications of synthetic strategies developed so far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.