Abstract

The potential of membrane-bound macromolecules for shielding glycolipids from involvement in specific binding events was considered in model membranes. Serum albumin and several Dextrans were covalently derivatized with oleic acid so that they adsorbed irreversibly to lipid bilayers. This provided a means of generating bilayer membranes with a considerable layer of attached material. Gangliosides dispersed in such membranes were subjected to attack by the enzyme, neuraminidase, in order to assess their ‘accessibility’. We were surprised to find that we could not demonstrate any significant reduction in ganglioside hydrolysis in phosphatidylcholine bilayers bearing extensive surface coats of protein or polysaccharide. We conclude that non-specific, physical shielding by macromolecules is an unlikely source of the often-observed ‘crypticity’ of glycolipids at the cell surface. Consistent with this interpretation was a relative lack of headgroup motional restriction seen for spin-labelled ganglioside headgroups in the same bilayers and in cell membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.