Abstract
BackgroundGlycolic acid is a C2 hydroxy acid that is a widely used chemical compound. It can be polymerised to produce biodegradable polymers with excellent gas barrier properties. Currently, glycolic acid is produced in a chemical process using fossil resources and toxic chemicals. Biotechnological production of glycolic acid using renewable resources is a desirable alternative.ResultsThe yeasts Saccharomyces cerevisiae and Kluyveromyces lactis are suitable organisms for glycolic acid production since they are acid tolerant and can grow in the presence of up to 50 g l-1 glycolic acid. We engineered S. cerevisiae and K. lactis for glycolic acid production using the reactions of the glyoxylate cycle to produce glyoxylic acid and then reducing it to glycolic acid. The expression of a high affinity glyoxylate reductase alone already led to glycolic acid production. The production was further improved by deleting genes encoding malate synthase and the cytosolic form of isocitrate dehydrogenase. The engineered S. cerevisiae strain produced up to about 1 g l-1 of glycolic acid in a medium containing d-xylose and ethanol. Similar modifications in K. lactis resulted in a much higher glycolic acid titer. In a bioreactor cultivation with d-xylose and ethanol up to 15 g l-1 of glycolic acid was obtained.ConclusionsThis is the first demonstration of engineering yeast to produce glycolic acid. Prior to this work glycolic acid production through the glyoxylate cycle has only been reported in bacteria. The benefit of a yeast host is the possibility for glycolic acid production also at low pH, which was demonstrated in flask cultivations. Production of glycolic acid was first shown in S. cerevisiae. To test whether a Crabtree negative yeast would be better suited for glycolic acid production we engineered K. lactis in the same way and demonstrated it to be a better host for glycolic acid production.
Highlights
Glycolic acid is a C2 hydroxy acid that is a widely used chemical compound
In the first experiment with S. cerevisiae, the pH was not adjusted and growth stopped at about 10 g l-1 glycolic acid
At pH 3 the growth rate of S. cerevisiae is considerably reduced at glycolic acid concentration of 30 g l-1 and no growth is observed at 50 g l-1
Summary
Glycolic acid is a C2 hydroxy acid that is a widely used chemical compound. Glycolic acid is produced in a chemical process using fossil resources and toxic chemicals. Biotechnological production of glycolic acid using renewable resources is a desirable alternative. Glycolic acid is the smallest alpha-hydroxy acid containing both alcohol and carboxyl groups. It is used in a wide range of chemical processes, in cosmetic industry and as a precursor for biopolymers. Glycolic acid can be polymerized to polyglycolic acid (PGA), which has excellent gas-barrier properties and mechanical strength, making PGA an ideal packaging material [1]. Glycolic acid is used together with lactic acid to produce a co-polymer (PLGA) for medical applications, Currently, glycolic acid is mainly produced chemically from petrochemical resources in a process where toxic formaldehyde is needed. Glycolic acid production from lignocellulosic biomass feedstocks would be more sustainable and possibly economically feasible
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.