Abstract

The facile, efficient, and straightforward preparation of electrode material for energy storage devices has drawn considerable interest for practical applications. In this study, we have synthesized the polyhedron Cu-doped ZnS (ZnS:Cu) structure on carbon cloth (CC) using a single-step glycol-assisted process. The highly interconnected polyhedron shaped ZnS:Cu functions as positive electrode material in an aqueous electrolyte for supercapacitor application. The ZnS:Cu polyhedron-like structures with higher electroactive sites and synergistic effect exhibited higher specific capacitance of 468 F g−1 at 1 Ag−1 and cycling stability of 890.5% after 5,000 cycles. The better electrochemical performance and higher cycling stability of ZnS:Cu can be dedicated to interconnected polyhedron-like structures, doping of Cu in ZnS, and binder-free electrode design. This underlines the potential of the Cu-doped ZnS-based supercapacitor for next-generation energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call