Abstract

Lightweight plastics and their composites are being increasingly used in automobiles to reduce emissions and costs, but the market demand for fossil fuel-based plastics such as polypropylene (PP) creates several environmental problems such as pollution and waste. Although replacing PP with biomass such as lignin is not a new endeavor, the vast majority of past studies reported reduced mechanical properties as lignin content increases, which limits its application in industry. Herein, blends of maleic anhydride-grafted PP (MAH-g-PP) and softwood-derived glycol lignin (GL) are successfully fabricated via a melt-mixing approach, which boast exceptional mechanical properties and thermal stability. Synergistic performance enhancement is observed when combined with carbon fiber reinforcement, which is elucidated by nanoindentation of the fiber/polymer interface. This work contributes to the development of sustainable automotive structures by efficiently combining biomass and traditional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call