Abstract
The probable involvement of hepatic carbamyl-P in the reciprocal relationship between hepatic ureagenesis and glycogenesis from glucose was explored. Isolated perfused liver preparations from 48-h fasted rats were employed. Moderate (9.2 mM) and relatively high levels of glucose (34 mM) were perfused. Hepatic glycogenesis, glucose-6-P, carbamyl-P, and citrulline levels, hepatic urea formation, and ureagenesis based upon perfusate urea levels were measured. Experimental probes selected to modify hepatic ureagenesis and carbamyl-P production and utilization included: (a) NH4Cl, maintained at 5 mM by continuous infusion (NH4+ is a substrate for carbamyl-P synthase I and glutamate dehydrogenase); (b) norvaline, an inhibitor of ornithine transcarbamylase which catalyzes the first committed step in the urea cycle; and (c) ethoxyzolamide, an inhibitor of carbonic anhydrase which produces HCO3-, an essential substrate for carbamyl-P synthase I. NH4+ increased ureagenesis and decreased glycogenesis. The inclusion of norvaline with NH4+ decreased ureagenesis and increased glycogenesis. Ethoxyzolamide with or without NH4+ inhibited both ureagenesis and glycogenesis, and decreased the hepatic glucose-6-P level. Glycogenesis was greater at 34 mM than 9.2 mM glucose, increased in norvaline-containing preparations correlative with increased availability of carbamyl-P, and decreased when carbamyl-P formation was inhibited by ethoxyzolamide. Kinetic analysis indicated a Km, Glc of 31 mM for glucose phosphorylation preliminary to glycogenesis. Glycogen formation via the "indirect pathway" (i.e. involving extrahepatic glycolysis, transport of lactate to the liver, and glyconeogenesis therefrom) was quantitatively insufficient to account for the observed glycogenesis. Glucokinase is contraindicated by the inverse relationship between hepatic glycogenesis and ATP availability in the ethoxyzolamide-treated preparations. In contrast, carbamyl-P:glucose phosphotransferase activity of the glucose-6-phosphatase system has the characteristics to bridge hepatic ureagenesis and glycogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.