Abstract
Understanding how living cells manage high-energy metabolites such as ATP and NADPH is essential for understanding energy transformations in the biosphere. Using light as the energy input, we find that energy charge (ratio of ATP over ADP+ATP) in the cyanobacterium Synechocystis sp. PCC 6803 varies in different growth stages, with a peak upon entry into the rapid growth phase, as well as a positive correlation with light intensity. In contrast, a mutant that can no longer synthesize the main carbon storage compound glycogen showed higher energy charge. The overflow of organic acids in this mutant under nitrogen depletion could also be triggered under high light in nitrogen-replete conditions, with an energy input level dependency. These findings suggest that energy charge in cyanobacteria is tightly linked to growth and carbon partition and that energy management is of key significance for their application as photosynthetic carbon dioxide-assimilating cell factories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.