Abstract

BackgroundHepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and insulin-like growth factor binding protein-1 (IGFBP-1), is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE). The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase). However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3) is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase), whose products are required for gluconeogenesis.ResultsIn this report we demonstrate that in H4IIE-C3 cells, four distinct classes of GSK-3 inhibitor mimic the effect of insulin on a third TIRE-containing gene, IGFBP-1. We identify the TIRE as the minimum requirement for inhibition by these agents, and demonstrate that the target of GSK-3 is unlikely to be the postulated TIRE-binding protein FOXO-1. Importantly, overexpression of GSK-3 in cells reduces the insulin regulation of TIRE activity as well as endogenous IGFBP-1 expression.ConclusionsThese results implicate GSK-3 as an intermediate in the pathway from the insulin receptor to the TIRE. Indeed, this is the first demonstration of an absolute requirement for GSK-3 inhibition in insulin regulation of gene transcription. These data support the potential use of GSK-3 inhibitors in the treatment of insulin resistant states such as Type 2 diabetes mellitus, but suggest that it will be important to identify all TIRE-containing genes to assess potential side effects of these agents.

Highlights

  • Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and insulin-like growth factor binding protein-1 (IGFBP-1), is rapidly and completely inhibited by insulin

  • We demonstrate that four different classes of inhibitors of Glycogen Synthase Kinase 3 (GSK-3) can mimic the action of insulin and reduce IGFBP-1 gene expression

  • We find that inhibition of GSK-3 reduces the activity of a heterologous promoter containing the IGFBP-1 Thymine-rich Insulin Response Element (TIRE), and propose that this mechanism underlies the repression of all three promoters by inhibitors of GSK-3

Read more

Summary

Introduction

Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and insulin-like growth factor binding protein-1 (IGFBP-1), is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE). PKB subsequently phosphorylates glycogen synthase kinase -3 (GSK-3) at an N-terminal serine residue (Ser-21 on GSK-3α and Ser-9 on GSK-3β) rendering it inactive [13,14] This PKB-mediated inhibition of GSK-3 contributes to insulin activation of glycogen and protein synthesis [14,15]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.