Abstract

Dysregulation of glycogen synthase kinase (GSK)-3β contributes to the pathophysiology of mood disorders. However, how its regulation is responsible for the functioning of serotonin (5-HT) requires further investigation. Although enhancement of T-cell function may present an alternative strategy to treat depression, the precise mechanisms have yet to be established. Our previous studies have found that interferon-alpha (IFN-α) up-regulates serotonin transporter (5-HTT) expression and induces 5-HT uptake in T cells. The present study is to examine GSK-3β regulation on IFN-α-induced 5-HTT functions. GSK-3β short hairpin RNAs (shRNAs) or GSK-3β inhibitors decreased IFN-α-induced 5-HT uptake and 5-HTT expression. Src activation and calcium/calcium-activated calmodulin kinase II (CaMKII) were involved in IFN-α-induced phosphorylation of proline-rich tyrosine kinase 2 (Pyk2) (Tyr402) and GSK-3β (Tyr216), which regulated 5-HT uptake. GSK-3β knockdown blocked the IFN-α-induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 (Thr202/Tyr204) and signal transducer and transactivator (STAT) 1. In addition to inhibiting ERK, a selective 5-HTT inhibitor fluoxetine blocked IFN-α-induced activations of Src, CaMKII-regulated Pyk2/GSK-3β cascade, as well as STAT1 activation and translocation. These results indicated that calcium/CaMKII- and Src-regulated Pyk2 participated in IFN-α-induced GSK-3β activation and GSK-3β-regulated 5-HT uptake. GSK-3β signaling facilitated IFN-α-activated STAT1 by regulating ERK1/2, which controlled 5-HT uptake. Fluoxetine interfered with the Pyk2/GSK-3β cascade, thereby inhibiting IFN-α-induced 5-HT uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call