Abstract
Salmonella enterica is known to survive in desiccate environments and is often associated with low-moisture foods (LMFs). In this work, S. Typhimurium ATCC 14028 was found to survive better by achieving the least reductions (3.17 ± 0.20 Log CFU reduction) compared to S. Tennessee ATCC 10722 (3.82 ± 0.13 Log CFU reduction) and S. Newport ATCC 6962 (6.03 ± 0.36 Log CFU reduction) after 30 days on surfaces with a relative humidity of 49% at ambient temperature. A metabolomic analysis revealed that S. Typhimurium was still active in energy metabolism after 24 h in the desiccate environment and glycogen, an energy reserve, was drastically reduced. We followed up on the glycogen levels over 30 days and found indeed a sharp decline on the first day. However, the glycogens detected on day 7 were significantly higher (P < 0.05) and thereafter remained stable above the original levels until day 30. The expression levels of both glycogen anabolism- and catabolism-related genes (csrA, glgA, glgC, glgX) were significantly up-regulated at all tested points (P < 0.05). The glgA and glgC insertion mutants displayed weaker survivability on both dry surfaces and in representative LMFs (flour and milk powder) compared to the wild-type strain. This work highlights the role of glycogen during different periods of desiccation, which may bring novel insight into mitigating Salmonella by disrupting glycogen metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.