Abstract

CpG oligodeoxynucleotides (ODNs) strongly activate the immune system after binding to toll-like receptor 9 (TLR9) in lysosome, which demonstrated significant potential in cancer immunotherapy. However, their therapeutic efficacy is limited by drawbacks such as rapid degradation and poor cellular uptake. Although encouraging progress have been made on developing various delivery systems for CpG ODNs, safety risks of the synthetic nanocarriers as well as the deficient CpG ODNs release within lysosome remain big obstacles. Herein, we developed a novel nanovector for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Natural glycogen was simply aminated (NH2-Gly) through grafting with diethylenetriamine (DETA), which was spherical in shape with diameter of approximately 40 nm. NH2-Gly possessed good biocompatibility. Cationic NH2-Gly complexed CpG ODNs well and protected them from nuclease digestion. NH2-Gly significantly enhanced the cellular uptake of CpG ODNs. Efficient CpG ODNs release was observed in the presence of α-glucosidase that mimicking the environment of lysosome. Consequently, NH2-Gly/CpG complexes triggered potent antitumor immunity and effectively inhibit the tumor growth without causing any toxic effect or tissue damages. This work highlights the promise of glycogen for lysosome-targeted on-command delivery of CpG ODNs, which brings new hope for precision cancer immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call