Abstract

The accumulation of glycogen occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited due to the lack of a growth nutrient, e.g., a nitrogen source. The structural genes of the glycogen biosynthetic enzymes of E. coli and S. serovar Typhimurium have been cloned previously, and that has provided insights in the genetic regulation of glycogen synthesis. An important aspect of the regulation of glycogen synthesis is the allosteric regulation of the ADP-Glc PPase. The current information, views, and concepts regarding the regulation of enzyme activity and the expression of the glycogen biosynthetic enzymes are presented in this review. The recent information on the amino acid residues critical for the activity of both glycogen synthase and branching enzyme (BE) is also presented. The residue involved in catalysis in the E. coli ADP-Glc PPase was determined by comparing a predicted structure of the enzyme with the known three-dimensional structures of sugar-nucleotide PPase domains. The molecular cloning of the E. coliglg K-12 structural genes greatly facilitated the subsequent study of the genetic regulation of bacterial glycogen biosynthesis. Results from studies of glycogen excess E. coli B mutants SG3 and AC70R1, which exhibit enhanced levels of the enzymes in the glycogen synthesis pathway (i.e., they are derepressed mutants), suggested that glycogen synthesis is under negative genetic regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call