Abstract

Lafora disease, a progressive myoclonus epilepsy, is an autosomal recessive disease caused in ∼80% of cases by mutation of the EPM2A gene, which encodes a dual specificity protein phosphatase called laforin. In addition to its phosphatase domain, laforin contains an N-terminal carbohydrate-binding domain (CBD). Mouse laforin was expressed as an N-terminally polyHis tagged protein in Escherichia coli and purified close to homogeneity. The enzyme was active towards p-nitrophenylphosphate (50–80 mmol/min/mg, K m 4.5 mM) with maximal activity at pH 4.5. Laforin binds to glycogen, as previously shown, and caused potent inhibition, half maximally at ∼1 μg/ml. Less branched glucose polymers, amylopectin and amylose, were even more potent, with half maximal inhibition at 10 and 100 ng/ml, respectively. With all polysaccharides, however, inhibition was incomplete and laforin retained 20–30% of its native activity at high polysaccharide concentrations. Glucose and short oligosaccharides did not affect activity. Substitution of Trp32 in the CBD by Gly, a mutation found in a patient, caused only a 30% decrease in laforin activity but abolished binding to and inhibition by glycogen, indicating that impaired glycogen binding is sufficient to cause Lafora disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.