Abstract

MFE-CP is a recombinant antibody-enzyme fusion protein used for antibody-mediated delivery of an enzyme to cancer deposits. After clearance from normal tissues, the tumor-targeted enzyme is used to activate a subsequently administered prodrug to give a potent cytotoxic in the tumor. MFE-CP localizes to cancer deposits in vivo, but we propose that its therapeutic potential could be improved by N-glycosylation, obtained by expression in Pichia pastoris. Glycosylation could enhance clearance from healthy tissue and result in better tumor:normal tissue ratios. To test this, glycosylated MFE-CP was expressed and purified from P. pastoris. The resultant MFE-CP fusion protein was enzymatically active and showed enhanced clearance from normal tissues in vivo. Furthermore, it showed effective tumor localization. This favorable glycosylation pattern was analyzed by tandem mass spectrometry. High-resolution, high-detection sensitivity collision-induced dissociation experiments proved essential for this task. Results showed that of the three potential N-glycosylation sites only two were consistently occupied with oligomannose structures. Asn-442 appeared the most heterogeneously populated with oligomannose carbohydrates extending from 5 to 13 units in length. Asn-484 was found only in its nonglycosylated form. There was less heterogeneity at Asn-492, which was glycosylated with oligosaccharide structures ranging from 8 to 10 mannose units. Nonglycosylated forms of Asn-442 and Asn-492 were not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.