Abstract

Monoclonal antibodies (mAbs) have been developed as therapeutics, especially for the treatment of cancer, inflammation, and infectious diseases. Because the glycosylation of mAbs in the Fc region influences their interaction with effector cells that kill antibody-targeted cells, and the current method of antibody production is relatively expensive, efforts have been directed toward the development of alternative expressing systems capable of large-scale production of mAbs with desirable glycoforms. In this study, we demonstrate that the mAb trastuzumab expressed in glycoengineered P. pastoris can be remodeled through deglycosylation by endoglycosidases identified from the Carbohydrate Active Enzymes database and through transglycosylation using glycans with a stable leaving group to generate a homogeneous antibody designed to optimize the effector functions. The 10 newly identified recombinant bacterial endoglycosidases are complementary to existing endoglycosidases (EndoA, EndoH, EndoS), two of which can even accept sialylated tri- and tetraantennary glycans as substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.