Abstract
Current tumor targeted drug and diagnostic delivery systems suffer from a lack of selectivity for tumor cells. Here, we propose a two-step tumor targeting strategy based on mesenchymal stem cells (MSCs), which actively traffic to tumors. We developed glycoengineering protocols to induce expression of non-natural azide groups on the surface of MSCs without affecting their viability or tumor homing properties. Glycoengineered MSCs demonstrated active tumor homing in subcutaneous and orthotopic lung and ovarian tumor models. Subsequent systemic administration of dibenzyl cyclooctyne (DBCO)-labeled fluorophores or nanoparticles to MSC pretreated mice resulted in enhanced tumor accumulation of these agents through bio-orthogonal copper-free click chemistry. Further, administration of glycoengineered MSCs along with paclitaxel-loaded DBCO-functionalized nanoparticles resulted in significant (p < 0.05) inhibition of tumor growth and improved survival (p < 0.0001) in an orthotopic metastatic ovarian tumor model. These results provide evidence for the potential of MSC-based two-step targeting strategy to improve the tumor specificity of diagnostic agents and drugs, and thus potentially improve the treatment outcomes for patients diagnosed with cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.