Abstract

Mammalian cells, including cancer cells, are covered by a surface layer containing cell bound proteoglycans, glycoproteins, associated glycosaminoglycans and bound proteins that is commonly referred to as the glycocalyx. Solid tumors also have a dynamic fluid microenvironment with elevated interstitial flow. In the present work we further investigate the hypothesis that interstitial flow is sensed by the tumor glycocalyx leading to activation of cell motility and metastasis. Using a highly metastatic renal carcinoma cell line (SN12L1) and its low metastatic counterpart (SN12C) we demonstrate in vitro that the small molecule Suberoylanilide Hydroxamic Acid (SAHA) inhibits the heparan sulfate synthesis enzyme N-deacetylase-N-sulfotransferase-1, reduces heparan sulfate in the glycocalyx and suppresses SN12L1 motility in response to interstitial flow. SN12L1 cells implanted in the kidney capsule of SCID mice formed large primary tumors and metastasized to distant organs, but when treated with SAHA metastases were not detected. In another set of experiments, the role of hyaluronic acid was investigated. Hyaluronan synthase 1, a critical enzyme in the synthetic pathway for hyaluronic acid, was knocked down in SN12L1 cells and in vitro experiments revealed inhibition of interstitial flow induced migration. Subsequently these cells were implanted in mouse kidneys and no distant metastases were detected. These findings suggest new therapeutic approaches to the treatment of kidney carcinoma metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.