Abstract

Endothelial cells line the inner portion of the heart, blood vessels, and lymphatic vessels; a basal membrane of extracellular matrix lines the extraluminal side of endothelial cells. The apical side of endothelial cells is the site for the glycocalyx, which is a complex network of macromolecules, including cell-bound proteoglycans and sialoproteins. Sepsis-associated alterations of this structure may compromise endothelial permeability with associated interstitial fluid shift and generalized edema. Indeed, in sepsis, the glycocalyx acts as a target for inflammatory mediators and leukocytes, and its ubiquitous nature explains the damage of tissues that occurs distant from the original site of infection. Inflammatory-mediated injury to glycocalyx can be responsible for a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and hepatic dysfunction. Moreover, some markers of glycocalyx degradation, such as circulating levels of syndecan or selectins, may be used as markers of endothelial dysfunction and sepsis severity. Although a great deal of experimental evidence shows that alteration of glycocalyx is widely involved in endothelial damage caused by sepsis, therapeutic strategies aiming at preserving its integrity did not significantly improve the outcome of these patients.

Highlights

  • Sepsis is the clinical syndrome of a systemic response to microbial infections

  • Exposure to pro-inflammatory mediators such as interleukin 1 (IL-1), IL-2, IL-6, Tumor necrosis factor-alpha (TNF-α), and other molecules released during acute inflammation such as bradykinin, thrombin, vascular endothelial growth factor (VEGF), and histamine results in endothelial activation and massive increase in glycocalyx expression of endothelial leukocyte adhesion molecule 1, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1)

  • Interaction of syndecans with TNF-α leads to a structural rearrangement of endothelial cells and loosening of intercellular junctions; this greatly increases paracellular permeability, further allowing extravasations of fluids, albumin, and solutes [2]

Read more

Summary

Introduction

Sepsis is the clinical syndrome of a systemic response to microbial infections. During septic shock, mortality can peak at 56% [1,2]. Sepsis is associated with altered micro-hemodynamics and heterogeneous local perfusion, micro-thrombosis and endothelial dysfunction, alteration of permeability, and interstitial fluid shift [3,4,5,6]. In clinical conditions of increased capillary porosity, like sepsis, albumin and other proteins may reach the extravascular space and, πis rises and the flow of fluid increases.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.