Abstract

Sugar regioisomerism (glycosidic linkage on different hydroxyl groups of the same sugar) widely exists in various polysaccharides and glycans with a significant contribution to their biological functions. However, the effects of this regioisomersim in glycopolymers and their self-assembled nanoparticles on such functions were almost not investigated previously. In this paper, this regioisomersim effect is studied for self-assembled nanoparticles NP-1-Gal and NP-6-Gal from triblock copolymers carrying different constitutional isomers of the pendent sugar species (1 and 6 denote the glycosidic linkage from the anomeric position and 6 position of the galactose unit, respectively). NP-1-Gal shows strong binding to lectins of Peanut (Arachis hypogea) agglutinin (PNA) and Erythrina cristagalli agglutinin (ECA), while NP-6-Gal does not. More importantly, they show binding behavior similar to the asialoglycoprotein receptor (ASGPR) but different internalization pathways in the Hep G2 cell after ASGPR-mediated endocytosis; i.e., NP-1-Gal can reach the early endosome, late endosome, as well as lysosome, while NP-6-Gal enters the early endosome only but not the others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call