Abstract

The development and cellular distribution of the inhibitory neurotransmitter glycine in the spinal cord of the sea lamprey were studied by immunocytochemistry and double immunofluorescence and compared with the distribution of gamma-aminobutyric acid (GABA). Results in lamprey embryos and prolarvae reveal that the appearance of glycine-immunoreactive (-ir) spinal neurons precedes that of GABA-ir neurons. Throughout development, glycine-ir cells in the lateral and dorsomedial gray matter of the spinal cord are more numerous than the GABA-ir cells. Only a subset of these neurons shows colocalization of GABA and glycine, suggesting that they are primarily disparate neuronal populations. In contrast, most cerebrospinal fluid (CSF)-contacting neurons of the central canal walls are strongly GABA-ir, and only a portion of them are faintly glycine-ir. Some edge cells (lamprey intraspinal mechanoreceptors) were glycine-ir in larvae and adults. The glycine-ir and GABA-ir neuronal populations observed in the adult spinal cord were similar to those found in larvae. Comparison of glycine-ir and GABA-ir fibers coursing longitudinally in the spinal cord of adult lamprey revealed large differences in diameter between these two types of fiber. Commissural glycine-ir fibers appear in prolarvae and become numerous at larval stages, whereas crossed GABA-ir are scarce. Taken together, results in this primitive vertebrate indicate that the spinal glycinergic cells do not arise by biochemical shift of preexisting GABAergic cells but instead suggest that glycine is present in the earliest circuitry of the developing lamprey spinal cord, where it might act transiently as an excitatory transmitter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.