Abstract

Glycinebetaine, a compatible osmolyte of halotolerant plants and bacteria, partially protected photosystem (PS) 1 and PS2 electron transport reactions against thermal inactivation but with different efficiencies. In its presence, the temperature for half-maximal inactivation (t1/2) was generally shifted downward by 3-12 °C. Glycinebetaine stabilized photoinduced oxygen evolving reactions of PS2 by protecting the tetranuclear Mn cluster and the extrinsic proteins of this complex. A weaker, although noticeable, stabilizing effect was observed in photoinduced PS2 electron transport reactions that did not originate in the oxygen-evolving complex (OEC). This weaker protection by glycinebetaine was probably exerted on the PS2 reaction centre. Glycinebetaine protected also photoinduced electron transport across PS1 against thermal inactivation. The protective effect was exerted on plastocyanin, the mobile protein in the lumen that carries electrons from the integral cytochrome b 6 f complex to the PS1 complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call