Abstract

In this work, peculiar porous α-Fe 2O 3 nanospheres were fabricated by a glycine-assisted hydrothermal method. They have large mesopores (ca. 10 nm) in the core and small mesopores (<4 nm) in the shell. To our best knowledge, there have been so far no reports on the synthesis of such peculiar porous α-Fe 2O 3 nanospheres. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy were employed to characterize the obtained Fe 2O 3 nanospheres. Effects of preparation conditions, such as reactants, reaction temperature and reaction duration, were investigated on the morphology and structure of Fe 2O 3 nanospheres. It was shown that the morphology and structure could be readily controlled by the time and temperature of hydrothermal treatment. The formation mechanism was proposed based on experimental results, which shows that glycine molecules play an important role in the formation of the morphology and porous structure of α-Fe 2O 3. The α-Fe 2O 3 porous nanospheres were used as gas sensing layer, and exhibited excellent gas-sensing properties to ethanol in terms of response and selectivity. The sensors showed good reproducibility and stability as well as short response (9 s) and recovery time (43 s) even at an ethanol concentration as low as 50 ppm. The gas-sensing properties of porous α-Fe 2O 3 nanospheres are also significantly better than those of previously reported Fe 2O 3 nanoparticles (ca. 30 nm). The sensitivity of the former is over four times higher than that of the latter at varied ethanol concentrations. The gas-sensing mechanism was discussed in details. Both fast response and steady signal make these peculiar nanostructures a promising candidate for ethanol detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.