Abstract

BackgroundThe most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the expansion of a GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 (C9orf72) locus. The pathological hallmarks observed in C9orf72 repeat expansion carriers are the formation of RNA foci and deposition of dipeptide repeat (DPR) proteins derived from repeat associated non-ATG (RAN) translation. Currently, it is unclear whether formation of RNA foci, DPR translation products, or partial loss of C9orf72 predominantly drive neurotoxicity in vivo. By using a transgenic approach in zebrafish we address if the most frequently found DPR in human ALS/FTLD brain, the poly-Gly-Ala (poly-GA) protein, is toxic in vivo.MethodWe generated several transgenic UAS responder lines that express either 80 repeats of GGGGCC alone, or together with a translation initiation ATG codon forcing the translation of GA80-GFP protein upon crossing to a Gal4 driver. The GGGGCC repeat and GA80 were fused to green fluorescent protein (GFP) lacking a start codon to monitor protein translation by GFP fluorescence.ResultsZebrafish transgenic for the GGGGCC repeat lacking an ATG codon showed very mild toxicity in the absence of poly-GA. However, strong toxicity was induced upon ATG initiated expression of poly-GA, which was rescued by injection of an antisense morpholino interfering with start codon dependent poly-GA translation. This morpholino only interferes with GA80-GFP translation without affecting repeat transcription, indicating that the toxicity is derived from GA80-GFP.ConclusionThese novel transgenic C9orf72 associated repeat zebrafish models demonstrate poly-GA toxicity in zebrafish. Reduction of poly-GA protein rescues toxicity validating this therapeutic approach to treat C9orf72 repeat expansion carriers. These novel animal models provide a valuable tool for drug discovery to reduce DPR associated toxicity in ALS/FTLD patients with C9orf72 repeat expansions.

Highlights

  • The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the expansion of a GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 (C9orf72) locus

  • Reduction of poly-GA protein rescues toxicity validating this therapeutic approach to treat C9orf72 repeat expansion carriers. These novel animal models provide a valuable tool for drug discovery to reduce dipeptide repeat (DPR) associated toxicity in ALS/FTLD patients with C9orf72 repeat expansions

  • By blocking poly-GA translation by an antisense approach, we show that the phenotypes can be partially rescued, demonstrating that poly-GA is toxic in vivo and that targeting poly-DPRs might be a useful therapeutic strategy for C9orf72 repeat expansion carriers

Read more

Summary

Introduction

The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the expansion of a GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 (C9orf72) locus. The pathological hallmarks observed in C9orf repeat expansion carriers are the formation of RNA foci and deposition of dipeptide repeat (DPR) proteins derived from repeat associated non-ATG (RAN) translation. Expansion of the GGGGCC hexanucleotide repeat in the C9orf intronic region was recently identified as a cause for amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) [1,2,3].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.