Abstract

Glycine, besides exerting essential metabolic functions, is an important inhibitory neurotransmitter in caudal areas of the central nervous system and also a positive neuromodulator at excitatory glutamate-mediated synapses. Glial cells provide metabolic support to neurons and modulate synaptic activity. Six transporters belonging to three solute carrier families (SLC6, SLC38, and SLC7) are capable of transporting glycine across the glial plasma membrane. The unique glial glycine-selective transporter GlyT1 (SLC6) is the main regulator of synaptic glycine concentrations, assisted by the neuronal GlyT2. The five additional glycine transporters ATB0,+, SNAT1, SNAT2, SNAT5, and LAT2 display broad amino acid specificity and have differential contributions to glial glycine transport. Glial glycine transporters are divergent in sequence but share a similar architecture displaying the 5 + 5 inverted fold originally characterized in the leucine transporter LeuT. The availability of protein crystals solved at high resolution for prokaryotic and, more recently, eukaryotic homologues of this superfamily has advanced significantly our understanding of the mechanism of glycine transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.