Abstract
Glycine N-methyltransferase (GNMT) is the most abundant liver methyltransferase regulating the availability of the biological methyl donor, S-adenosylmethionine (SAM). Moreover, GNMT has been identified to be down-regulated in hepatocellular carcinoma (HCC). Despite its role in regulating SAM levels and association of its down-regulation with liver tumorigenesis, the impact of reduced GNMT on metabolic reprogramming before the manifestation of HCC has not been investigated in detail. Herein, we used 2H/13C metabolic flux analysis in conscious, unrestrained mice to test the hypothesis that the absence of GNMT causes metabolic reprogramming. GNMT-null (KO) mice displayed a reduction in blood glucose that was associated with a decline in both hepatic glycogenolysis and gluconeogenesis. The reduced gluconeogenesis was due to a decrease in liver gluconeogenic precursors, citric acid cycle fluxes, and anaplerosis and cataplerosis. A concurrent elevation in both hepatic SAM and metabolites of SAM utilization pathways was observed in the KO mice. Specifically, the increase in metabolites of SAM utilization pathways indicated that hepatic polyamine synthesis and catabolism, transsulfuration, and de novo lipogenesis pathways were increased in the KO mice. Of note, these pathways utilize substrates that could otherwise be used for gluconeogenesis. Also, this metabolic reprogramming occurs before the well-documented appearance of HCC in GNMT-null mice. Together, these results indicate that GNMT deletion promotes a metabolic shift whereby nutrients are channeled away from glucose formation toward pathways that utilize the elevated SAM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.