Abstract

Of a large number of amino acids examined, changes in glycine were the only ones which were correlated with the ability of dark-grown barley leaves to synthesise protochlorophyllide, δ-aminolaevulinic acid and chlorophyll on exposure to light. A rapid depletion was found in endogenous glycine in barley leaves after day 7. Illumination of the leaves increased the rate of glycine depletion. Glycine concentrations were high throughout the young leaf. The top and middle leaf sections however, which had maximal chlorophyll synthesising potential exhibited the most pronounced decrease in glycine as the leaf aged. Using glycine-[14C] pulse techniques the half life of glycine in 7 and 14-day-old dark-grown leaves was 3.5 and 4.4 min respectively. Light treatment lengthened the half life to 6.9 and 12.1 min in 7 day and 14-day-old-leaves. Sustained illumination continued to decrease glycine turnover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.