Abstract

Soybean (Glycine max [L.] Merr. cv Hobbit) plants were grown in a growth chamber for 56 days in a phosphorus- and nitrogen-deficient soil and were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd) Gerd. and Trappe and Rhizobium japonicum strain USDA 136, or by either organism alone, or by neither. Non-VAM plants received supplemental phosphorus and nonnodulated plants supplemental nitrogen to achieve the same rate of growth in all treatments. Plants of all four treatments had the same (P > 0.05) dry weights at harvest, but VAM plants had higher rates of CO(2) exchange (CER, P < 0.05) and lower leaf P concentrations (P < 0.01). Leaf nitrogen concentrations were lower in nodulated than in nitrogen-supplemented plants (P < 0.01) while starch concentrations were higher (P < 0.01). There was a significant negative relationship between nitrogen and starch (r = -0.989). Statistical evaluation of the data showed that some parameters (CER, leaf area and phosphorus content) were associated with phosphorus nutrition (or the presence of the VAM fungus), others (leaf fresh weight and root dry weight) with nitrogen nutrition (or the presence of Rhizobium), and some (leaf nitrogen and starch content) by both factors. The development of microsymbiont structures and nodule activity were significantly lower in the tripartite association than in plants colonized by one endophyte only. The findings suggest that endophyte effects go beyond those of simple nutrition and associated source-sink relationships.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.