Abstract

Capping ligands are indispensable for the preparation of metal-halide-perovskite (MHP) nanocrystals (NCs) with good stability; however, the long alkyl-chain capping ligands in conventional MHP NCs will be unfavorable for CO2 adsorption and hinder the efficient carrier separation on the surface of MHP NCs, leading to inferior catalytic activity in artificial photosynthesis. Herein, CsPbBr3 nanocrystals with short-chain glycine as ligand are constructed through a facile ligand-exchange strategy. Owing to the reduced hindrance of glycine and the presence of the amine group in glycine, the photogenerated carrier separation and CO2 uptake capacity are noticeably improved without compromising the stability of the MHP NCs. The CsPbBr3 nanocrystals with glycine ligands exhibit a significantly increased yield of 27.7 μmol g-1 h-1 for photocatalytic CO2 -to-CO conversion without any organic sacrificial reagents, which is over five times higher than that of control CsPbBr3 NCs with conventional long alkyl-chain capping ligands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.