Abstract

Human adrenomedullin (hAM) is an endogenous peptide that has potent vasodilator activity. Mature AM is biosynthesized from its intermediate form, glycine-extended AM (AM-gly), by carboxy-terminal amidation. AM-gly is generally considered to be biologically inactive but is a major molecular form in human and rat plasma. The present study demonstrated that recombinant human AM-gly (hAM-gly) elicits potent vasodilator effect on isolated rat aorta. In aortic rings, hAM-gly produced dose-dependent (0.1–100 nM) relaxation in phenylephrine-precontracted strips (p D 2 8.4±0.5). The vasorelaxant potency of hAM-gly was comparable to that of hAM (p D 2 8.6±0.2) but hAM-gly took a significantly ( P<0.01) longer time to reach the maximal relaxation compared with hAM ( T max 23±4 vs. 5±2 min). Vasorelaxant responses to hAM-gly were abolished by endothelial removal. N ω-nitro- l-arginine ( l-NNA) and AM(22–52) significantly ( P<0.01) reduced the vasodilator effect of hAM-gly. Furthermore, 4-phenyl-3-butenoic acid (PBA), an alpha-amidation enzyme inhibitor, significantly ( P<0.05) inhibited the vasorelaxant responses to hAM-gly without any effect on the hAM-induced relaxation, suggesting the possible process of amidation in the rat aorta. We further clarified that the aorta has the ability to convert exogenous hAM-gly to mature hAM and the conversion is inhibited by PBA. These results suggest that the circulating AM-gly may play a role in regulating vascular tone and increased plasma AM-gly may be involved in the pathophysiology of cardiovascular diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.